Fock态

  本文主要讨论Fock态的推导,顺便试着用一下自然单位制。


自然单位制

  本文尝试使用自然单位制。设\(\hbar=1\)

Fock态

谐振子的Hamilton为 $$ \hat{H}=\frac{\hat{p}^2}{2m}+\frac{m\omega^2\hat{x}^2}{2} $$

$$[x,p]=i$$

引入湮灭算符和产生算符: $$ \hat{a}=\sqrt{\frac{m\omega}{2}}\left(\hat{x}+\frac{i}{m\omega}\hat{p}\right) $$

$$ \hat{a}^\dagger=\sqrt{\frac{m\omega}{2}}\left(\hat{x}-\frac{i}{m\omega}\hat{p}\right) $$

$$\begin{align} [\hat{a},\hat{a}^\dagger]&=\frac{m\omega}{2}\left[\left(\hat{x}+\frac{i}{m\omega}\hat{p}\right),\left(\hat{x}-\frac{i}{m\omega}\hat{p}\right)\right]\\ &=\frac{m\omega}{2}\left(\left[\hat{x},-\frac{i}{m\omega}\hat{p}\right]+\left[\frac{i}{m\omega}\hat{p},\hat{x}\right]\right)\\ &=-2\frac{m\omega}{2}\frac{i}{m\omega}i\\ &=1 \end{align}$$

用\(\{\hat{a},\hat{a}^\dagger\}\)表示\(\hat{x},\hat{p}\): $$ \hat{x}=\sqrt{\frac{1}{2m\omega}}\left(\hat{a}+\hat{a}^\dagger\right) $$

$$ \hat{p}=-i\sqrt{\frac{m\omega}{2}}\left(\hat{a}-\hat{a}^\dagger\right) $$

用\(\{\hat{a},\hat{a}^\dagger\}\)表示\(\hat{H}\): $$\begin{align} \hat{H}&=\frac{\hat{p}^2}{2m}+\frac{m\omega^2\hat{x}^2}{2}\\ &=-\frac{\omega}{4}\left(\hat{a}-\hat{a}^\dagger\right)^2+\frac{\omega}{4}\left(\hat{a}+\hat{a}^\dagger\right)^2\\ &=\frac{\omega}{2}\{\hat{a},\hat{a}^\dagger\}\\ &=\omega(\hat{a}^\dagger\hat{a}+\frac{1}{2}) \end{align}$$

研究\(\{\hat{a},\hat{a}^\dagger\}\)与\(\hat{H}\)的对易关系: $$ [\hat{a},\hat{H}]=\hat{a} $$

$$ [\hat{a}^\dagger,\hat{H}]=-\hat{a}^\dagger $$

作用在能量本征态上,能得到: $$ \hat{a}^\dagger\ket{n}=\sqrt{n+1}\ket{n+1} $$

$$ \hat{a}\ket{n}=\sqrt{n}\ket{n-1} $$

$$ \ket{n}=\frac{(\hat{a}^\dagger)^n}{\sqrt{n!}}\ket{0} $$

$$ \hat{a}^\dagger\hat{a}\ket{n}=n\ket{n} $$